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SUMMARY

This fifth and final volume of the report, ""Hydrodynamic Effects of
Nuclear Explosions, ' presents new theoretical developments for two
problems. The first is the determination of the waves resulting from
the passage of a high-pressure disturbance over the free surface of a
body of water. This would occur in the case of a burst on or over land
near a shore and is, therefore, of interest to the Five City Study in

which three nuclear surface bursts are near rivers or bays,

The second topic is motion of the ground water table induced by a surface
burst. This problem is of interest for the determination of the migration
of radioactive contaminants and is also applicable to three cities of the

Five City Study.
Only theoretical development is given here. Typical methods of

application may be found in Volume IV of this report subtitled "Five

City Study."
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decay constant in error function
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variable in Hankel transform
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variable in Laplace transform
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pressure acting upon surface

Magnitude of pressure step
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pressure front

Laplace transform of dimensionless pressure
Laplace-Hankel transform dimensionless pressure

magnitude of particle velocity vector
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variable
time scale
horizontal velocity of pressure front
wind velocity
beach slope
exponential decay factor
dimensionless pressure
Dirac delta function
dimensionless surface elevation
dynamic response
surface elevation

T
fluid density
air density
dimensionless time
shear stress at surface
shear stress at bottom
transcendental function
contour of integration
gamma function
variable in transform
refer to partial derivatives
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various functions as required in analyses

water depth
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PART 1

WAVES GENERATED BY A TRAVELING DISTURBANCE







1. ESTABLISHMENT OF THE BASIC EQUATIONS

Consider a two-dimensional pressure disturbance arriving at the free
surface of a body of water, as illustrated in Fig. 1. The response of
the water to such a disturbance will be analyzed by means of the long

wave equations valid for shallow water:

Continuity:
A
n+[uthem] =0 (1)
t
X
Momentum:
u +tuu_ = -gn --l—P-‘rs-‘rb (2)
t X x p ' x plhrn
where
x = distance from shore
t = time after arrival of pressure at shore
h = h(x) = still water depth
7 = surface elevation around still water level
u = horizontal component of water particle velocity, assumed
constant over a vertical
g = acceleration due to gravity
p = water density
P = opressure acting on the surface
e E shearing stress at the surface
T shearing stress at the bottom

and subscripts are used to denote partial differentiation with respect to

themselves,

Of couse, it is possible to treat these equations successfully by numerical
techniques (finite differences, the method of characteristics). However,
through suitable approximation, it is possible to derive analytic solutions,

in certain instances, which are sufficient.
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Figure |

Problem configuration
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The shearing stresses, Ts and ‘rb, may be written

i 2
Ts = Pafi Uy

2
b pfzu

T

where Op is the air density and Uy is the wind velocity near the surface.
Although UAmay be large, N and fl are small so that T, may be
neglected. Similarly, although p is large, f2 and u are small so that
T, may be neglected. Hence, the shearing stress term will be neglected;
a good approximation except near the shore where h+ 7 = 0.

The equations may be linearized by assuming the convective inertia term,

uu_, to be small and that 7 may be neglected in comparison with h (a

crude approximation near the shore). Then the equations become:
Continuity:

R+ luh) = 0 RO
Momentum:

u, = - gn_ - 2B (4)

t X p X

Differentiating Eq. 3 by 3/3t and Eq. 4 by 3/3x gives

Tee uthx tu, hi= O (5)
and
u = - oL P 6
xt -~ " By P xx (6)
3



Eliminating u_ and u from Eq. 5 by means of Eq. 4 and Eq. 6 results

t t

in an equation for
n,, - h_ (gn +lP)-h(n +L1p ) = 0 (7)
tt X X p x 8Tk P xx

For a uniformly sloping beach, h = ax, one has

1 - 1
X Noex ™ My - og My = - I (xpxx i Px) (8)
By defining time and length scales
T = Uloag (9)

L = UZ/ag (10)

where U is some (constant) typical velocity, one may introduce the

dimensionless variables

N
¢ = n/L
X = x/L

> (1)
r = t/T
AN P/PHLJ

which, when substituted in Eq. 8, gives

X rXX + CX - c'r‘r = - (x o i }’x) (12)

Assuming no initial disturbance, the initial conditions are

C(x,0) = CT (x,0) = 0 (13)



The boundary condition is imposed that
-0 ' as X~ @ (14)
The general solution of this initial boundary value problem can be found

by first applying the Laplace transform to 7, making the change of

variable

g = X

and then applying the Hankel transform of zeroth order to

The Laplace transform of Eq. 12 with respectto T is

X'+ -8l = L (P P (15)
where

N -sT '

flx,s) = \0 C(x,7) e dr . (16)

oo

® =
)\ Yire ST
0

Plx, s) dr (17)

and primes denote differentiation with respect to .

Introducing the change of variable

: =z W (18)

2 2
df 1 df 20 (dP 1 dP
;—2“‘?';5‘49f" _.—2—+'53?> Leg)
4 dr?
5

e




Letting

]

S (z) £ 7 (k?) 47 (29)
Jo o

F(k)

Q(k)

S P(7) 7] (k#) 47 (21)
0 (o]

and using the property

)
g (df+éd_£)=J(kg)d’=-k2F (22)
Jg Vg2t °
the Hankel transform of Eq. 19 gives
2
k™ Q
F = - — (23)
k- + 452

Then the solution obtained by inversion transforms is found to be

1 Ehee ST m 4s2 Q
Cx, 1) = -y, 7) + T S _dse g dk k Jo(ki) ——— .(24a)
c-i» 0 (k +'4s )

The first part of this expression clearly represents the hydrostatic
response, whereas the integral term represents the dynamic response

which will be denoted by Cd' That is,
Cxo 1) = - v, T+ L (24b)
Before presenting detailed analyses of this solution in specific cases, it

is of interest to present a simplified calculation of the small time response.

Neglecting the gravity terms in Eq. 7 results in

(TT

Q

xww t 7\, (25)



A pressure wave possessing a sharp front moving at speed U in the

positive ¥ direction can be represented as:
yix, 1) = y{r -x) = H(r - x) P*(r -X) (26)

where H is the Heaviside step function and P* is continuous. Because

of the form of P%, one may replace 3y/3 by - (3¥/571) in Eq. 25:

- Vr (27)

Cr = XY

TT

Making use of Eq. 13 and the identity

T CT-X
(Hr - Pir-xar = Hr-v | Py ar (28)
0 0
one obtains
T-X
¢~ Hir-x) {xPrir--0 T pxzar) 1 (29)

0

This may be generalized for an arbitrary bottom y = -h(x) and any

pressure distribution traveling unchanged at constant speed, ¥ = ¥(T - \):

~T
€ =~ hix) vt -x) - h\(\) \) y (T - x)dr  T<o (30)
0

If v has a sharp front ahead of which the pressure is zero
T=X
 ~ H(t - x) {h(\) Pi(r - x) - h\(s() ( P:(*) d’} T << 1 (31)
“0
These expressions are a first approximation only but are useful since P

and h may be quite arbitrary. Improvements of a higher order can be

obtained by investigating the full boundary value problem,
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2. STEP-FUNCTION PRESSURE OVER A UNIFORMLY SLOPING BEACH

The simplest model of the pressure assumes a sharp front moving at

unit velocity, the pressure being zero ahead and unity behind. In other
words

yix, 7) = H(r -x) = H(r- 2% (32)

where H is the Heaviside step function, The sharp front of this model

is a realistic representation of the traveling shock, although the pressure
behind the shock will actually decay. Such a decaying pressure will be

treated in Section 3.
The composite Laplace-Hankel transform of ¥ is

1
2

i
Q(k,s) = —5 cxp Nl (33)
2s

Inserting this expression into Eq. 24 it is found that

. / KN
© ] ACt1™  exp ST - s
£, = 2 § KT (k7) 5§ ———25 ds dk (34)
20 c-i= k" + 4s

We may evaluate the Laplace inversion integral first and then deal with

the Hankel integral. Although the behavior of the Laplace integral for

large T can be found by the method of steepest descent, as will be dis-
cussed in Section 5, the results are not too significant, physically, Here
we shall be concerned with the small time response only.

The response at small 7 is represented by the transform at large s.

Therefore, we expand the integrand for large s:

, n-1
WU Y e (ar - ) 4
xS exp 75 ds

(35)
SR T

A POE R IRETNE

e

B R e e

e

e e
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Each integral in the expansion may be evaluated:

: -1/2
1 Z n-1 Tn
ek (177 S Jpnn D e}
. n21
so that:
n-1 _ n-1/2¢7 . -
Ly ~ ; (-1) T So I (k=Y T, (k \/7) dk (37

The integral factor here may be evaluated in terms of Gauss' hyper-

geometric function:

” -1/2 L/
§ 9008 10y by = 2 (e 1Y) e

= 0 X>rT
which, in turn, may be expressed in terms of Legendre polynomials:
® X

SOJOM) Tppy ey ak = Hr- 2 (1-2%) i

Inserting this result into Eq. 37 gives

om et (ied) e

(39)
= 0 X>r
Combining this with the static component -y = - H (1 - ¥) gives
n X
£ = (-7) P (1 -2=)rHI(T-X) r<<l1 (40)
= n T

10



This series may be summed explicitly, giving:

2 /2

C o~ (L42r+72 - ay! X<rT

. (41)
=0 x>T

Since T and | are very small compared to unity, this expression may be

approximated as

C ~2¢-7 X<T
(42)
= 0 X>T

which is seen to be the first term of the series in Eq. 40, the succeeding
terms being small. As illustrated in Fig. 2, the free surface is deformed
only beneath the pressure, having a sharp front at the pressure front.

The mathematical profile OA'CD satisfies conservation of mass, Due to
the presence of the bottom, however, the physical system cannot; perhaps
the new shoreline at A should be interpreted as a sink-like singular
point. Singular behavior at a shoreline has been investigated by Ho and

Meyer (1962).

Reverting to physical variables, it is found that the peak elevation, Tigs

and the peak depression, r,D, arc

P ot
r o 0
'E T pU
(43)
Porv'Z t
"D ¥ 35Uz + o)

where Po is the magnitude of the pressure step.

This case may be extended to consider a step of finite duration. The

pressure may be thought of as a superposition of two step functions:

Y, 1) = H('r-x)-H('r-ro-\) (44)

11
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Figure 2

Step-pressure response
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Analysis similar to the foregoing yields the result illustrated in Fig. 3;
the length AE depends on T and T, and is an almost uniform depression,

Again, the maximum water elevation is CE = T,

13
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3. DECAYING PRESSURE OVER A UNIFORMLY SLOPING BEACH

In this second 1.1cdel, we assume a pressure distribution that decays
behind a sharp front, as:

yix,?) = H (7 - x) e"PTX) (45)

Then we have

exp (- D) ap (- K
ZS(s+435)/: 2 = (“"g—)

2s s+ 8

Q(k,s) =

(46)

The first part of this expression is the same as that of Eq. 33 and so
represents the dynamic response of that model, which we may denote
by Cfil), enabling us to write

r
1 cT oL oy o BlT-TE)
g, = el A4 ¢l (x, %) e Alr-T%) gps (47)

by the convolution theorem.

Again concentrating on behavior at initial moments (7 << 1) we may use
1)

the small-time approximation of Cg , i.e., Eq. 39 to evaluate the con-

volution integral:

1l .
(1) oy o=Blr=7%) .
-ﬁgocd (X.T')e dT

~T 3
= - BH (T =)\ L+ 2p 4 pud L ogy)7 2 BT
X

=S

15
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Expanding the radical and neglecting terms above first order (since

T << 1) gives
(o s @l {(10§) (- BY)

tax- 1 -y e BTN L od)) (48)
Introducing Cgl) and - ¥ then yields
£ = H(r- x) {- %[1 - e-B(T-X)j + X eyl (12)} (49)

This response is illustrated in Fig. 4 and may be somewhat more

realistic than the previous models. Again, the peak heightis € = 7.

Reverting to physical variables where PO is the peak pressure and S

is written as T/To, where To is the time scale of the pressure decay,

gives
P ot
P
' ¥ TpU
(50)
PoorTo
p =~ pU

16
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4, THE CASE OF A CONSTANT-DEPTH CHANNEL

The governing equation for the disturbance in a constant-depth channel

with a wall at the leading end follows immediately from Eq. 7

RO Rre

1 _ h
i nxx B E ntt -7 ng Pxx 1) 4
The boundary conditions may be written as 3
A
n, = 0 at x=0 (u=52 = 0 1
ro=n 0 as B feo for t< {
:
while the initial conditions are
i
N ERONE at t = 0 (5.5)
For small time, an approximate result is again found by neglecting
gravity forces so that Eq. 51 becomes
_h
My = I} p.\:.\: (54)
Writing the pressure as
. )
P = P (t U) i
2
%
gives 8
4
) §
P = — "
XX UZ ptt \?r
. 1
Letting P be a step function “.%
-_ X &
P = POH (t - L (55)

19
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where Po is the magnitude of the pressure step, we have

P = o' (t- =) (56)

XX

Hlo™

where. 8 is the delta function. Then it follows that

P h
(o] X
n, = 6' (t - =) (57)
tt pUd U

Integrating with respectto t from O tot and utilizing the initial conditions
gives
P h )
[ x = , )
Mot = 2 {u{t-§)-m(-F) -6 (5)} (58)
pU

On the other hand, if we take P to be a smooth function, we have

_ _h (59)
n = — P
tt pUZ tt
so that
_ _h . .
Nt t) = -‘-)—U?{P(.\. - Plx,0) - t P (x,0) (60)

For example, letting P be given by
X \
Sl (61)

where erfc denotes the complementary error function, yields

nix,t) = jgz {erfc [:a (% - t:)dl - erfc (a %)
Bl (5))

Figure 5 illustrates such a response.

20
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5. RESPONSE AT LARGE TIME

It is evident that the present model can only poorly describe the large
time response since at l.arge time the pressure front will be acting in
water which is no longer shallow, Furthermore, as the blast wave
progresses, its strength and velocity eventually decrease to those of
an acoustic wave, so that our assumptions are invalid, But, still, it

is of interest to see what the results are,

Denoting the Laplace inversion integral of Eq, 34 by I and making the

change of variable
A = S@ 6 = /7 (63)

we have

ctie _0(A -k°/44)

1= 2-1-:1(-2) Sc_iw da (64)

A° +K°6°/4
This is of the form

S e 91(8) 5 (A, 6) aa
r

for which the method of steepest descent is suitable, When 6>> 1
(1 >> 1) one may evaluate the integral approximately by deforming the

contour in the A plane to pass the saddle-points located at

_ ik ik
LS, LN

The steepest path should be directed at angles 37/4 and 7/4 with the
positive real axis in the complex A plane. Since G = (Az % k262/4)'l

23




has two simple poles at A = + ikg/2 it is evident that the residues
must be accounted for in changing the contour from T to TI'' (Fig. 6).

Following standard formulas, we have:

—
.
I

1 _ 1 .
= 777 Sr_ 7] Sr” + Residues

Isaddle points t Ipoles

-3/2
s:s-l- 8 k———l- (cos k@ - sin k @)

+ZEsmT_§-lk) P | (65)

Equation 65 may be substituted in Eq. 34 to yield

1/4

1
G~ e, N

+Smsin(kr+1)J (k2) dk | (66)

Both integrals in this expression may be explicitly evaluated:

= [(‘r;rl) ] LE X < (I_:z‘_l)z
-0 >‘>(r+1 (67)

24



3.2 Sample Analysis

The value of a sample is only as good as the water in it can be meas- |
ured. This measurement is a function of how the water is removed
from the sample chamber walls, the instrument used for analysis, and
how accurately the instrument is calibrated. Although present pro- (
cedures may be adequate and possibly even optimum, detailed quan-

titative investigations of many aspects of the procedures would provide

a sounder basis for analysis results and may well show how improvements |

can be made,

3.2.1 Water Removal l

Experiments on the sampler so far have shown that water "sticks' to
the sample chamber walls and that heating drives the water off.  The
more water that sticks to the walls, the more margin for error exists
in the analysis results since even small percentage differences in the
amount that sticks in the preflight evacuation and the amount that sticks
in the postflight analysis might mcan large amounts of water., A pro;
gram to quantitatively determine the effects of the following variables

on water retention is proposced.

a) Materials, Present materials plus any others that a litera-

ture survey indicates might be good.
b) Chamber Temperature
c¢) Chamber Pressurce
d) Water Concentration

Suitable chambers of candidate materials would be tested on the pres-
ently uscd mass spectrometer (unless a better instrument is found, as
discussed in the following scction), Chamber surface area and volume
would be comparable to that of an actual sample chamber, Tests would

be run at at least three values of cach of the other three variables so that

25




and

1/4
€ = H(x - 7) ‘jﬁ)f?)‘—rr

saddle points

; \/_.17_:51/4) F(%%éi)
1/2
AEppra ) e 3.3

The complete expression for [ then is

E= -y+(Ey +(Cy) (69)
saddle points poles
Because of the discontinuities, it is convenient to indicate the effective
region of each component of this solution in a X - 7 diagram, shown in

Fig. 7.

It is seen from Fig, 7 that two fronts exist, one moving with the pressure
front as represented by the ray X = 7, and the other moving with ever
increasing speed ahead of the pressurec front, The variable speed of

the outer front is given by

S
{:
2

(70a)

or in physical variables

gﬁt = fagx (70b)

26
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which is precisely the local wave speed ‘\/—g—h since the depth, h is

ax. The wave height is infinite there (although integrably singular) and
the surface in the neighborhood is essentially given by Eq. 67. Physically,
the present model would predict a splash-like wave-front driven forward

by the pressure front and traveling at the local wave speed.

The decreasing surface height as x - = is entirely due to the contribu-

tion of the saddle points, Eq. 68. By using the convergent expansion

(a)_(b)_ n
F(a, b, C, Z) = 1+ —_(E,_ Fr (71)
n [ ]

nz 1

Eq. 68 becomes
1/4 1/2
(t/X%) 1 (7 T
(€ ) 72 Al - e +0 -} (72)
g saddle points O X (-1 { ?(X] (X]

where

_ T'(1/4)
A = =379y (799

NE

and r/X is small, Near the pressure front, 7/Xa 1, the following

expansion may be used:

) b)
F(a, b, a+b, z)z-T'IY‘E()ETTTI?Y (a()n()n
n>0 n.

. (1 - 2z)"{log (1 - 2) - 2y(n + 1)

+YP(a+n)+yP (b+n)} (74)
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Then, recalling that (1 - m) = y(m) + rcot #m, it is found that at
the front, 7/X = 1,

(€4) e | (75) :
4 saddle points L '

Combining these results, one arrives at the sketch shown in Fig, 8. ’
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6. DISCUSSION

In this analysis of a blast wave passing a shore two peculiarities arise:
1) the solution is not valid near the shoreline; 2) the free surface rises
under a positive pressure, These are related and may be discussed in

terms of a constant-depth channel which was treated in Section 4,

First, it is clear that the disturbance must occur wholly beneath the
pressure distribution as long as the channel depth is small enough that
the wave velocity is less than the pressure velocity, Lamb (1932) found }
that in the case of an infinitely long channel of depth h, a distributed

pressure traveling at speed U will result in a surface change in phase

with the pressure if U <‘\/_g-i and oppositive in phase if U >‘\/_g-3. )
This may be seen as follows., Choosing a coordinate system moving with

the pressure, one obtains a steady state. From the Bernoulli equation

2
P(x) + % + h(x) = const ;
P 2 gh“(x)

[

it is found by differentiation that

1 ap [, . @*|an _ ‘
p dx —3|dx ~ ¢
gh
1 dP
dh . _p I Q _
oS ol
Eﬁ"l)

same . . > .
Hence, dh/dx and dP/dx are of {opposite }SIgn it U>gh Itis
then easy to see that a positive pressure gives rise to an elevation or a
depression according to whether th: flow is supercritical or subcritical,
Since the flow velocity is just the velocity of the pressure in a stationary

coordinate system, we have Lamb's result,
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In the present case of a semi-iniinite channel, part of the surface is
elevated because U > \f/gh. However, due to conservation of mass,
this fluid mus: be supplied from behind the pressure front, This is
in accordance with the results presented earlier., The same con-
siderations apply to the case of a sloping beach, The immediate

neighborhood of the shore deserves further study,
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1. INTRODUCTION

In the event of a nuclear explosion near the ground surface, a cavity
would be produced. If the ground water level at the location of the nuclear
explosion is relatively high, this would influence the flow of ground water.
In particular, radioactive contamination of the ground water basin is
possible. Previous investigation into deep-underground explosions
indicates that water contamination is of little importance. The same,

however, may not be true for a near-surface explosion.

Several problems are postulated within this report. These problems

are either completely solved or solved to the point that numerical cval-

uation becomes straightforward. These problems are:
a) The filling of a cylindrical crater in an unconfined aquifer.
b) The filling of a cylindrical crater ir an unconfined aquifer

near a river.

c) The discharge of a stream into a large well in a confined
aquifer. .
d) A quiescent well in a uniform flow, The advection and

diffusion of contaminants initially present in the well are

also investigated.

e) Flow into a water surrounded crater.

PRECEDING
PAGE BLANK
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2. THE FILLING OF A CYLINDRICAL CRATER IN AN
UNCONFINED AQUIFER

The problem under consideration is the flow of ground water into an
empty cylindrical reservoir. The physical occurrence of this problem
may be the filling of a cylindrical void excavated by a nuclear explosion.

This situation is shown in Fig. 9.

GROUND TRy
1T
WATER TABLE

POROUS MEDIUM

/////////////////_////////

BEDROCK
BEFORE EXPLOSION

WAT A __
9‘ H
77777 77777777777 R 77777777

BEDROCK
JUST AFTER EXPLOSION !

T A et

Figure 9

The material within a radius R of the explosion is assumed completely
removed., The water in the ground starts to flow out of the wetted face

of the walls of the crater and begins to fill the crater. As time approaches
infinity, the crater would be filled with water to the level H. From the
mathematical point of view, this problem is one of unsteady, unconfined

flow radially towards a large "'well'" which is initially empty,
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The problem is first formulated by writing down the differential equation

and the boundary and initial conditions.

hir,t) i

b’ ' —
/TS 7T 77 T 77777777777
R

Figure 10

The differential equation is given by combining the equation of continuity

Au u W
2R TS e g
~r r -~z

with Darcy's law
u = "o, o = -k Up/y)+z2]

where axial symmetry (/-6 = 0) has Feen assumed and

r = radial coordinate
z = vertical coordinate
u = velocity component in the r direction
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w = velocity component in the z direction

=}
n

velocity vector

© = velocity potential

p = pressure
v = specific weight
This gives '

2 13 ( T
¢ - Z = e— - + -
77 0 ol rsz) 0

Q/
N

This equation applies within the flow field which is bounded by the bottom {
bedrock, the top free surface, the left scepage face, and the height H at

r = infinity as shown in Fig. 10,

The initial condition is the quiescent state with the free surface given by

z = H = constant for R - r ¢ x,

The boundary condition at the right side (r = =) is the velocity w =0,
The boundary condition at the bottom is w = 0 (z = 0), The boundary
condition at the seepage face r=R (0 v z - ho) is p =0 which implies

© = - kaz. i

The boundary condition at the free surface z = h(r,t) is

a) kinematic |
i
oh . 30 *h Ap _ t
m ey e O
b) dynamics
© = - kz
where m is the porosity,
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We now nondimensionalize the variables by the following formulas. The

nondimensionalized variables are shown in Fig,.11.

h* = h/H, z* = z/H, r* = r/R,
o, ale t
¢* = ofkH, R STy 4
)z"
‘ 1 T
* pr = - zn, 23 HZ gt dhr 3t _
: tF RIE Ir+ ~ Jzw
|
1 on 2z = h*
asg:k-
= 53 i <H\2 13 7 e 0 in D =
I L az:::Z AN VAT - TR ) i at r¥ - ®
TTI7VI7T7 77777777 ﬁ

Figure 11

The two boundary conditions on the free surface may be combined,

Ignoring the stars, we have

O = -h 0olr,z=h(r,t),t) = - hir,t)
Differentiating
-ﬁ:l@+?—oﬁsﬂ;-9ﬁ<l+@>
At ot Az ot At ~t dz
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oh e, deth | dp (20 |
-B—;—Br+ézar' dr or “az)

These may be used to eliminate one of the variables from the S

_ ¢ (free
surface) conditions.

2.1 Method I: Expansion-in-time Series

One of the standard ways of attacking this type of problem (initial boundary

problem) is the expansion in powers of t. Thus, we let

olr, z,t) = coo(r,z)wttwl (r.z)+tZoZ+...

h(r,t) = ho(r) { thl(r) to, ..

Substituting into the differential equation

p = H/R = constant
The boundary conditions are

00,

—— O

Az

o

S
o

]

1

g
[e]
=
N
1l
_
A
~
/o
8

AR DA
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For ®, i=1,2,... on Sf, the condition will have to be derived by

substituting the series into the boundary condition. The boundary con-

dition is

X %0
at - 292 ar _.2(2: 0
e Por T "3
¥4 2

or

Substituting the series into the boundary condition.

20 72 [ |
[ . I R l ;
O t 20, + ...t pT O, teoy i *’.‘O()‘ bro e
r r z 7z
. 2
+ _OO + 1 Ol e B = 0
P2 z
Separating the various order of t
2 ] 2
o R 2
1 - p or \ %7/ 97
o ARy oo 20, 20
%) :-_I-{pz'<2 0 l}+ lx’ *l}
2 2 cr  or 7 =7 3z
etc

The advantage of this method is, as is the case with most approximate
theories, that the nonlincar system is reduced to a succession of linear
problems. The solutions should be valid for a relatively small t,
Remembering that it is the dimensionless time which must be small, it

is instructive to observe that

42



Typical values of H, m, and k indicate that, for t* = 0.1, t is of the {1
order of a day or so. Thus, the small time t* solution is not entirely

useless. Indeed, the solution ¥y t Y, should be good for a period of

a week or so after initial blasting.

. A IS 5 Mgt

The problem for (,oo(r,z) is, therefore, as follows (Fig. 12);

+p li a‘DO -0, _
. " ror \” 5z % 05 ==l

f///|/////\:///ff.f/////////77//

a(oo -0
Sz
Figure 12
Before attempting a solution, let Oy = - 1+ (0(') so that the problem in

(3(') is (Fig. 13)

o N
2R G AT

#.=0
l-h
az(pl a(p’
Voo 0 21 a7/ 0 |
=|-2 el WO/ — =
¢° azz ' r or \r-;;)—o ¢. 3
77777777 X777 7 ///7/////77”r
=0
Figure 13 9z
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e g e e e e e et e e e~ i

.

To obtain ¢’6 we separate variables.,

(p(') Z(z) R(r) to obtain

-ZZ = -92%{ %(r%?) = constant = -kz
2 sinkz.l
Z 1+ k"2 =0 a2 = ’
cos kz
0,
— = 0 at 2 =0 Z:Akcoskz
z
0y = 0 at z=1 = k:(nfé)n, n=0,1,2,

2
I dR kA
L [r_d_r.]-? R =0
d°R 1 dR 2

drz ¥ r dr = (k/p)" R = 0
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which gives

_ k k
R = CIO(Br)+DK0(Br)

where Io and Ko are the modified Bessel functions of the lSt and an

kinds, respectively.

The boundary condition for r — « (<p6 - 0) then requires C = 0 since

1 X
(&4

IO(X) ~
j/Zﬂx

m -X
Ko(x) ~ 7 Ir"é-; c

Thus, solution may be expressed

and

{n + %)ﬂ

_ - - 1
oo--1+ZAHKO<——p-——1)cos(n+E)TTz
n=0

It rernains to evaluate An which may be obtained by the use of the re-

maining boundary condition, i.e.,

at r =1, 00=-z
- (n+=)m
2L\ 1 _
zAnKo(\ 5 /cos(n+z)ﬂz— 1 -z
n=0 :
%
Let
1
(n+ =)
B = A [ 2’71
n n oL p J
45
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Then, by Fourier series methods, B_ is easily found to be

8
ﬁ .
ﬂz(Zn + 1)
Hence,
® K (2!‘1 +1 1:
\ 8 ) 2 p _ z
o, = -1+ cos(2nt+ 1) m =
0 Ln2on+ )% K (an I 17_) 2
n=0 o 2 P
Thus, we now know oo(r,z).
Let
Q&) & o) 2 %)
L 2 (" 0) =90 0
i = - {ef (o (2) 2
z=1
The problem for 9, is then (Fig. 14)
Y4
| ¢, = f(r)
2
37 30
=0 l 2 l_a. ( l > = -
i nraUIEE A G TV 0

U777 777V, 7 7777777777 =
1P
:;2
Figure 14

which may be solved by Hankel transform techniques. These will not be

performed here.
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2.2 Method II: Quasi-Steady Solution

The method presented before would yield the exact solution if the series !
were convergent and if the entire series were found. Practically, this §
should be convergent for a small enough t and, for such a small t,
perhaps one or two terms in the series would be sufficient.

Even the first two terms, however, are not easily evaluated ]
numerically, although it can certainly be done. This numerical difficulty {
would be more severe in the case of ol than (pO. In other words, even

though the method of expansion in powers of t yields analytical solution

in the form of 0g(r,z), ¢ (r,z), etc., to obtain numerical results, it is still
necessary to do a substantial amount of computational labor. Therefore,

it would be desirable to have a simpler solution which would give numerical !
results without too much work., This would, of course, have to he a

more approximate theory, Such a theory is presented. This theory is

based on the assumption of quasi-steady motion and the Dupuit-Forscheimer

approximation,

== ——T

jh ///

///FR//////////f/////// —
r

et T — e

S .

Figure 15
Let Q(t) = the discharge through the sides
h(t) = the height of water in the crater
H = the height of water in the porous medium for r = «
47
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At a given instant of time, it can be assumed that the motion is given by

the Duprit-Forscheimer solution, With this assumption,

2 2
H™ - h =ﬂ%logr/R (1)

where K is the permeability,and r is the radial distance representing

the intersection of the Dupuit free surface with z = 11,

There are now three unknowns h(t), Q(t) and r(t). Therefore, two more

equations are needed. Onc of them is obviously

t
T Qln dr TR%h
0
or
2 dl
Q - ®R %: (2)

The second one is not so casily found, One way is that the volume of
water in the reservoir should come out ol the voids ol the dewatered

region. That is

>
TR"h - ¢ 2mp s(p) dp (3)
R

where s is the drawndown as illustrated in Fig. 8 and is given by the

Dnpuit formula

ol

sto) - -\ i -"—QI\.—log_-

and € is the porosity.
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A<
(-9
®

Figure 16

Before attempting a solution. nondimensionalize by the following variables

r#=1r/R, h*=nh/Il, Q--= Q/‘fTK”Z» = _Zt—
R™/HK
Then
]l - }.‘;::Z = Q:j: 10!_‘ r::: 3
dh ;
Q= o= |
W1
hs = 2¢ ' pll - /T~ D% Tog o7 dp
Sl
rEe= ] | pre
— r 3% yn
=NZR- o=l e y.lp'\/l-Q-lo;‘n dp
.2 i —
= g (rc 1)-zer-\[1 - Q% log p dp
1
Dropping stars,
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l- h2 = dl: log r

h =

This is a system of nonlincar integro-differential e

examine the integral

I = fp-\[l-olo,_.p dp

2 k dh
€ (r -l)-Zele l-a-tlogp dp

quations,

Sl

First

Let
g = eV de = oY dy
then
I = J’l Or.‘y ‘\/I_T dy
Now let
z = 1-Qy., y = (I -2)/Q, dy = - dz/Q
1 - -L.exp :%(l-z)]\/?(—g—' = -CZ(;Q J‘vxp(-%z)ﬁ'dz
Let
w = %z dz = zgdw,. w = x2
l = -15 eZ/Q \29);/&‘} eV afw dw
. 02/ (9>3/z S
ST \2 o ¢ xTdx
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2
The integral Je-x xzdx may be integrated by parts to give

2 2 2 ]

2 I(x/Z) e 2xdx -:,_’-‘-e'x -3 dx

o

The original integral I is evaluated between the limits r and l. The
relationship between x and p (after tracing through all the changes of

variables) is

Hence
r
f p V! -Qlogp dp
!
/z —
6 '\/7- Q log r
x 2 | 'V?Z/Q'\F-Qlogr _XZ
S Z° 2 Ne7g s
w/é VT-Qlog I
3 1-Qlogl
- l-ZQQIOgr e\cpr 2(1-Qlogr] e-Z/Q
\/ 2Q
1
> & {(\/2/0 V1-Qlogr)F-(1/2/Q) F}
X gl
where F(x) = J' e ’ d?
0
To recapitulate, one has
l- h2 = Qlogr
Q = dh/dt
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h = ¢(r?-1)- ¢ .\[Zi'igl%f exp[_(z-égltig r) 7

J
T 2l [(\/@)F

(VIS ¥
- Q/
to be solved.

Now consider the function in the brackets for the expression in h.

_ 2 - 2Qlog v 2 -2Q log r\ ~2/Q
F. -‘\/ 5 tkp(- 3 /-'VZ;Q e

[ [2 -2Qlog r
= -\-‘/—-T—/F*( 2/Q)F

.\/2-2810gr a Vz/Qf—Qlog "

so that the expression E may be rewritten

'\[Z/Q'\r - Qlog r exp [- é (1 - Qlog r)]- '\/2/0 e-Z/Q

. (VZ/Q VT - Qlog r)F+ (\/27Q) F
= /27 2/R { VI-Qlog r e2lo8T 1}

- (VZ/Q Vl - Q log r) F + (VZ/Q) F



= \/27Q e"Z/Q {'\/1 -Qlogr 2 . l}
. (-\/'276-\/_1 -Qlog r)F + (\/270)1?

The system of nonlinear integro-differential equations can be solved,
and the three functions Q(t), h(t) and r(t) may be obtained, This
involves some numerical computation; however, the amount o! com-

putation should be much less than the computation for P and 0, etc,

of the first method,

Another method will be presented which is not based on Eq, 3 but is

based on the formula

or

P
r¥ = 1+—£l‘5R “\/ gz V&' = 1+ L5VYVERY

where v =Kb/e. b is a weighted average of the depth of the flow

which may, for all practical purposes, be taken as equal to HO.

Letting 1.5 '\/u7HK = B, we have (dropping stars),

r = I+B‘\/t_ (3b)
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E'q,uati'on 3; simply states that the zone of influence of the draining crater
spreads at a rate proportional to -\/T (which is normal for diffusion-type
phenomena) with a proportionality constant equal to 1. 5'\/7. This latter
constant is based on observations of discharging wells, Hantush (1965),

The other two equations, of course, remain unchanged and are

"1-h% = Qlog r
Q = dh/dt
repeating Eq. 3b,
r =

1+ BT
These combine easily to give
1-h% = di/dt log (1 + BT

which may be written

dh - It

C
1-hé  log (14 8D

The LHS is

l(l 1 N
2 l-h+li'h}dh

which integrates to

1+h‘l/2
1 -h

log (1 - h) +%log (1 + h) = log(

[ 8]

54




The RHS is, letting t = wz, w' =z Pfw, z=1+w  successively

2w dw .2 w'dw’ _ 2 (z-1)dz

IoglI+N)-?IoglI+w)_? Tog =

. 2 r(zdzﬁ_ dz 1
- EZ_\log Tog z .
E _Z__": d(z) dz 1
2 logz “Tog z |
Now
2 3
Poodx (log x) (log x)
I o = = log'log.\'l+logx-+ Z%Z +.34‘?3 P

Hence, h(t) is given implicitly by the relation

1/2

log {13} = logllog (1 + 8/ - log|log (1 + B/T)]
log (1 +24/0% - tog (1 + B4/
- 2
/d \ 1
¢ e ek s8N v 8 y/m

+

or
1/2

(%—i'—:) = exp (f(xz) - f(x)> f(x) = jlx l:ggg

where x =1 + ﬂ'v t.

Let

-i—f:— = exp (2 [f(xz) - f(x)]): F(x)
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— - i b U

one has

The function F(x) and, hence, h(x) may be evaluated simply by means
of the digital computer. It should look like the curve shown in Fig. 9.

hix)
|
- )
|
Figure 17
The function h{x) is
Lg(x) 1
h(x) —-(———-° =
eg x) + 1
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where

2
x
- 435
g(x) _[‘ Tog &
This is the same as
log x2 y
glx) = edy .
log x y
where 4 = log x
Thus,
( e
h(logx) = h(4) = T
ef + 1
L = log (1 +B[D)

h(4) is evaluated in the range 0 < 4

Fig,
depends only on the quantity RZ/V.
on the formula r=R + 1,5 Vut.

57

Ei (log xz) - Ei (log x)

Ei (2 log x) - Ej (log x)

Ei(24) - Ei (1)
tanh [% (Ei (24)- Ej (4.))]

= 2 and this is shown graphically in

10, It can be seen that this last method eives a filling time which

The accuracy of the result depends
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3. THE FILLING OF A CRATER NEAR A RIVER IN AN UNCONFINED
AQUIFER

The problem of the flow of ground water into an empty cylindrical crater
in a medium with infinite extent has been considered in Section 2 and is
relatively simple, due to circular symmetry. In the case of a crater
located near a river or a lake, such as Detroit, the problem becomes
rather complicated due to its nonsymmetry. An exact solution involves
a considerable amount of computer calculation which is beyond the time
limit. In order to obtain the numerical results, approximate solutions
are given. These approximate solutions are based on some assumptions,
in particular the Dupuit- Forscheimer assumption, as has been discussed

in the previous sections,

Figure 19 indicates the general configuration of the problem. The
elevation of the water along the river is assumed to be constant. That
is to say the fluctuations of water level of the river are neglected. The
mathematical formulation of the problem is similar to the problem
indicated in Section 2 except along the river where © = k(p/r + z) is
constant, The differential equation and boundary conditions can be

written as follows:

The differential equation

The boundary conditions at the free surface are the same as in the case

of an infinite aquifer, that is

a) Kinematic
oh 3¢ 3h  do
(RS M s s e O
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b) Dynamic
O = - kz
The boundary condition along the river is ¢ = - kH,

The notations are as defined in the previous sections except A which

is the distance between the crater and the river,

One of the methods of solution to this problem is to use the method of
images. On the opposite side of the river, as shown in Fig. 20, one
introduces a recharge crater, with the recharge strength equal to the
flow strength of the crater. One obtains the solution for each individual

crater by use of power series as has been done 'n the previous section,

Since the equation of the velocity potential for different order is linear,
we may superpose the solution of two individual craters and obtain the
resultant solution which satisfies the boundary condition along the river:
As has been demonstrated in the previous sections, the calculation of

the numerical solution of one crater by use of power series expansion

is quite laborious., Therefore, in the following section, an approximate
solution is given from which numerical results may be calculated without

too much work,

It is clear that the solution of this problem can be divided into two stages.
Stage 1, when the radius of influence zone, r, is less than the distance
between crater and river, A. In this stage, the probiem can be consid-
ered as if the river were not present. The solution has been obtained in
the previous section. Stage 2, when the radius of influence zone, r,

is greater than A. In this stage, the river begins to effect the motion of
the ground water. However, in this stage the gradient of the velocity
potential ¢ becomes smaller (the gradient of velocity potential is max-
imum at initial instants and near the crater). The assumption of small

drawdown may be used.
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As the drawdown becomes smaller the discharge in a column of unit

width, q, may be approximated as
q = - kHvh

where H is average depth of the aquifer. Substituting this equation into

the unsteady continuity equation

>
-

v.q = €

Q
o

where ¢ is the nporosity gives

v?h = £

kH

A

=

/)
-

This is the usual heat equation. Since the equation is linear, one could
also use the superposition method to satisfy the boundary condition along

the river.

Writing the Laplace equation in cylindrical coordinates one has

2%h 12k e 3h
51_2 r ar KH 3t

The solution to this equation with the boundary and initial conditions

prescribed in Section 2 is

'” -u
h = § -8 f 2 &
°© 49KH L € u
4nHt

" Hoc 413('1? [ Ei(-X)]
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b e et s s e . b

U PR T ST X TR ST TR ORR

where

I'ZE

4KHt

X =

The drawdown is

o= P = 4nc12<“1?1 [- i (-X)]

Superposing two craters in space as indicated in Fig, 2] one has

1‘2 € I‘Z €
H -h = Q_ E. |- l_ + E, |- 2_
° anKTT | '\ 4KM Y\ 4K

where r and r, are distances from crater and image crater, respectively,

They are equal to

r{' = (x-k)z‘ryZ
2= (e 08yt

in a rectangular system,

The equation governing the filling of the crater is

_ o2 dh
Q = 7R =K

Substituting into the previous equation we have

4ﬁx(Ho-h)

dh _ e
dt 2 e 20
Ré[E |- == | +E |- 2=
4KHt '\ 4KAt
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After integrating, we obtain

log (H, - h) = sHX¢ y +c
. 2 l'l € rz €
R Ei - = + Ei b —
4KHt 4KHt
Using the initial condition t =0, h =0, we have ¢ = log Ho
therefore
h 1 4HK¢t
H_ - "X 2 2
o 2 r) € T, €
R7|E, |- + E, |+
1\ 4xH: 1l 4k
y
"2 I
Q 0 -9 = &
MAGE CRATER
hzHg
PA-3-9073
Figure 21
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4, DISCHARGE OF STREAM INTO A LARGE WELL IN A
CONFINED AQUIFER

In the case where the explosion has created a cavity near a stream and
the aquifer under consideiation is confined, the solution of the problem
of filling the cavity may be rather simply found with the notation shown
in Fig, 22,

A -—
d
1
270 :
. e
a S
A -—
P
Figure 22
where b = the thickness of the aquifer

X, = distance from origin to center of point well
h = water level in well
h = water level in stream

distance from center of real well to stream

d
R = radius of well
X = coordinate

y = coordinate
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The solution may be written as

where

Q = discharge
T = hydraulic transmissivity = Kb
K = permcability

This is the solution for a point well at x = X, y =0 with a stream
of head hs along x = 0. The distance d and the well radius R are

as yet unspecified.,
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For a finite diameter well, any equipotential may be taken as a well
cross section. Thus, if hw is the level of water in the well, then

along the well edges

: (x-x)2+y2
LR 4$TL“ " z
§ w (x+xl)"+y
and
2 2
(- x))"+y" ranT 1

(x+xl)2+y

This is the equation of a circle (the well edge).

(x-xl)2+y2 = oz(x+x[)2+ofy2
or

2 l+o 2 2 B

x-—l—_—02xlx+xl+y = 0

2 2

2 (_l+a\__<,l+a) 2l l+a> 2

x -2 .\l——l_ajx+ '\ll-or fxl-\xll-(y +y® =0
or

(e 1+ o), 2 2(l+a>2 2

1T-o/ 'Y = XI\T-a/ "%

Thus, th ter is at x = x, ~+%, and the radius is x (‘*“z-l-a
us, e center 1s a -x”_a,an € radius i 1 'l—_—a - .

This solution may be easily adapted to a finite circular well at a distance
d from the stream. The center is at
o I
11 -0 lo-1

since @>1, always,for a flow into well,
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and

Recall that

where

Thus,

and

Hence,

thus,

or - X =

o = exp.rig—r (h -n )J = eZB

21T
oy LE S

2B 5 -R
a;:=ezp-l=7———‘bc-(_ = tanh B
a e + 1 e te
o ST coth B
a-1 -
A
S

(g_—:/ = coth™ B
‘o + 1\2

\
e O cochB-l = cosechzq

-~
1~
'

- X, = dtanh R d=-xlcothB
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_ sinh 1
" cosh B sinh

R = (tanh R) (cosech B8) d

dsech 8 = R

The procedure for obtaining the solution is (Fig, 23):

¥y

b,

M Cos

- X 5

Figure 23

Given R, d, h , h , and K, b, etc.
s o

1) Obtain 3 from d = (cosh B) R
d >R % = cosh B
2) Obtain X from |x1| = d tanh 88
3) Q = 2nT/B (h_-h )
Solution:
4nT ¢ (x - dtanh B)% + y2

(h_ - h)
Qs (x + d tanh B)Z + yz

which gives equipotential lines and, by implication, flow lines.
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To get filling times, etc., h = hw(t)

20T 2nT hs r
QM) = == (b, - by () = —— % [1 - Cw]
cosh R cosh R = E
‘ h_(t)
&ty = —=—
S

One either has

2 _ort
R hw(t) = ‘jo Q1) dTr

which gives

nRZh ) = | Q(r)dr
S -,O

or

d T z 3
_£ = 5 2 - 1 - C = C (l = C)
dt R% cosh 1d
cos R
C = constant = ol
R® cosh™! &
"0s R
l—c-i-—:r = Cdt
- s
Integrating
-log (1 -€) = Ct+ constant

The condition t = 0, £ = 0 implies that the constant = 0

el
I-C = exP(‘ .22 -1d>

R~ cosh R
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or

E%V-(-t)=l-exp<- 2T ¢t >
s chosh'l%

and finally,

h(t) = hs[l - exp (- : c:sThElg)J
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5. A QUIESCENT WELL IN A UNIFORM FLOW

If, after the crater is fililed, one can assume there is a uniform flow over
the well as illustrated in Fig. 24, some fluid will pass through the well,
and some fluid will bypass it. If the fluid in the well were radioactive,
and if it were assumed that the radioactivity is simply advected, it would

be of interest to know the width of the zone of contamination downstream,

Figure 24 , !

It will be shown in this section that d = 4 R.

With the x,y coordinate system shown in Fig. 24, the mathematical

problem is

V2h=0forr= x2+yz'>R
- kgl—] = U for r -
ox
h = constant on r = R
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"4

Without loss of generality, this constant can be taken to be zero. The

solution to this problem can be found easily, and it is

h = - cos 8 <r - -R—2>
1 = -E C =
r = X ty
-1
@ = tan y/x
This is the real part of
BN PN S
The imaginary part is
)
¢ R7%y °
©F TR T
X ot Y

The value of © at v = R, x =0 is

U
E&R

Thus, the critical streamline (Fig. 25) is represented by the equation

2.
EZR:E Yf.__I—{—L'
k k _ 2 2
x oty

as x = x, this implies y - 2R = d/2. Thus,the thickness of the zone of

contamination d is 4R,
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Figure 25

The foregoing analysis is based on nondispersive flow. Actually, the
radioactivity would, of course, disperse transversely from the zone of

contamination with the result of a larger zone than 4R.

To investigate dispersion in a porous medium, the situation could be

idealized and the case of a simple mixing zone (Fig. 26) is investigated.

U
—— r
c=0
- -1
|
Yo |
C=l
|
|
Figure 26 ¢

The only variable is the concentration C, and the governing equation

is the dispersion equation
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P38 (0,48) 1 & (5, 88)

u

P

which, in the éresent case, since v = Oand U = y becomes

ac _ 3 3C 3 3C
U 9% | Do +3—y[Dyay—

Here Dx and Dy are the dispersion coefficients in the longitudinal and

transverse directions.

Neglecting the Dx term compared with the Dy term on the ground of a

boundary layer (BL) assumption, we have

o 8 S
Sl ey WSt

where € = D),/U. Since U is constant, Dy would be expected to

be constant also. Hence, € is constant. Absorb € in vy to obtain

)
aC | °C
R/
BC y - = C=0
x>~ 0
y = -2, C =1
g = 5 S G/ ey T 0

For a similarity solution, let

n o= (y/\[x)

and ¢ = {(7M); then

> C X N
2% 1—3’72“

Q

x
ll

W
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Thus, DE becomes

l 7 " -
znf +f =0
and BC becomes

f( ) 0 f(-'uo) =l

The solution is G = - 1/2'\/17

® 2

L >

1 | -
+— | e
T onl2

d?

il

f(T,)

This is the standard diffusion type solution and may be found in texthooks.
The value of Dy needs to be estimated, In Ref. 2 a graph shows Dy/D

as a function of ApV/D where

Ap = particle radius of the bed material
V. = velocity (U in this case)
D = diffusion coefficient (molecular)

For large velocities V, (or for ApV/D~ 10) Dy/D is about 5 to 10,

Hence, Dy can be taken to be about D to 10D for practical purposes.

The similarity variable is

T:/Z E _l.

ZV?VYD_yﬁJ_: 2'\/%:4/_U//
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Letyg, be the y where C = 1/10

This means

y
Ay 30 - 1. 64

2 V(Dy/U) X
Thus
Voo 3 VD TT

The mixing zone, therefore, grows like 7/ x with a proportionality constant

a3 \/lODy/U

Applied to the present problem, the flow situation would appear as shown

in Fig. 27.

—
o G
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